博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
TensorFlow NormLization
阅读量:5961 次
发布时间:2019-06-19

本文共 4433 字,大约阅读时间需要 14 分钟。

local_response_normalization

local_response_normalization出现在论文”ImageNet Classification with deep Convolutional Neural Networks”中,论文中说,这种normalization对于泛化是有好处的. 

经过了一个conv2d或pooling后,我们获得了[batch_size, height, width, channels]这样一个tensor.现在,将channels称之为层,不考虑batch_size

1 tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None) 2 ''' 3 Local Response Normalization. 4 The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius. In detail, 5 ''' 6 """ 7 input: A Tensor. Must be one of the following types: float32, half. 4-D. 8 depth_radius: An optional int. Defaults to 5. 0-D. Half-width of the 1-D normalization window. 9 bias: An optional float. Defaults to 1. An offset (usually positive to avoid dividing by 0).10 alpha: An optional float. Defaults to 1. A scale factor, usually positive.11 beta: An optional float. Defaults to 0.5. An exponent.12 name: A name for the operation (optional).13 """

举例子:

1 import tensorflow as tf   2    3 a = tf.constant([   4     [[1.0, 2.0, 3.0, 4.0],   5      [5.0, 6.0, 7.0, 8.0],   6      [8.0, 7.0, 6.0, 5.0],   7      [4.0, 3.0, 2.0, 1.0]],   8     [[4.0, 3.0, 2.0, 1.0],   9      [8.0, 7.0, 6.0, 5.0],  10      [1.0, 2.0, 3.0, 4.0],  11      [5.0, 6.0, 7.0, 8.0]]  12 ])  13 #reshape a,get the feature map [batch:1 height:2 width:2 channels:8]  14 a = tf.reshape(a, [1, 2, 2, 8])  15   16 normal_a=tf.nn.local_response_normalization(a,2,0,1,1)  17 with tf.Session() as sess:  18     print("feature map:")  19     image = sess.run(a)  20     print (image)  21     print("normalized feature map:")  22     normal = sess.run(normal_a)  23     print (normal)
feature map:  [[[[ 1.  2.  3.  4.  5.  6.  7.  8.]     [ 8.  7.  6.  5.  4.  3.  2.  1.]]      [[ 4.  3.  2.  1.  8.  7.  6.  5.]     [ 1.  2.  3.  4.  5.  6.  7.  8.]]]]  normalized feature map:  [[[[ 0.07142857  0.06666667  0.05454545  0.04444445  0.03703704  0.03157895       0.04022989  0.05369128]     [ 0.05369128  0.04022989  0.03157895  0.03703704  0.04444445  0.05454545       0.06666667  0.07142857]]      [[ 0.13793103  0.10000001  0.0212766   0.00787402  0.05194805  0.04       0.03448276  0.04545454]     [ 0.07142857  0.06666667  0.05454545  0.04444445  0.03703704  0.03157895       0.04022989  0.05369128]]]]

  这里我取了n/2=2,k=0,α=1,β=1,举个例子,比如对于一通道的第一个像素“1”来说,我们把参数代人公式就是1/(1^2+2^2+3^2)=0.07142857,对于四通道的第一个像素“4”来说,公式就是4/(2^2+3^2+4^2+5^2+6^2)=0.04444445,以此类推

  注意:这里的feature_map为【1,2,2,8】,其中1代表图像的数量,2X2代表图像的长宽,8代表图像的层数(map),NRL主要是利用map去计算,然后计算的值为图像的长宽(像素),与图像的数量无关!

        我们可以这么理解,feature_map分割为直观的图像,第一个通道[1,8,4,1],第二个通道[2,7,3,2],第三个通道[3,6,2,3],以此类推。。。

      那么求解的过程和上面就一一对应了,其中在边角达不到n的时候,那就省略。

  能感觉到这种方法不好吗?效果肯定有的,因为对像素归一化了,有利于计算。但是对于一整幅图像来说反而没有什么太大的作用,因为归一化的种类不同,造成部分特征体现不出来,有时候反而不好。

batch_normalization

   为什么有batch?上面结尾已经做了初步分析,也已经大概引出来对批量的图像做归一化,对单个图像做的归一化效果不好!

可以看出,batch_normalization之后,数据的维数没有任何变化,只是数值发生了变化 

OutOut作为下一层的输入 
函数: 
tf.nn.batch_normalization()

def batch_normalization(x,                        mean,                        variance,                        offset,                        scale,                        variance_epsilon,                        name=None):

Args:

  • x: Input Tensor of arbitrary dimensionality.
  • mean: A mean Tensor.
  • variance: A variance Tensor.
  • offset: An offset Tensor, often denoted ββ in equations, or None. If present, will be added to the normalized tensor.
  • scale: A scale Tensor, often denoted γγ in equations, or None. If present, the scale is applied to the normalized tensor.
  • variance_epsilon: A small float number to avoid dividing by 0.
  • name: A name for this operation (optional).
  • Returns: the normalized, scaled, offset tensor. 
    对于卷积,x:[bathc,height,width,depth] 
    对于卷积,我们要feature map中共享 γiγi 和 βiβi ,所以 γ,βγ,β的维度是[depth]

现在,我们需要一个函数 返回mean和variance, 看下面.

tf.nn.moments()

def moments(x, axes, shift=None, name=None, keep_dims=False):# for simple batch normalization pass `axes=[0]` (batch only):

对于卷积的batch_normalization, x 为[batch_size, height, width, depth],axes=[0,1,2],就会输出(mean,variance), mean 与 variance 均为标量。

 

 

 

 

 

 

参考:

  https://blog.csdn.net/mao_xiao_feng/article/details/53488271

  https://www.jianshu.com/p/c06aea337d5d

  https://blog.csdn.net/u012436149/article/details/52985303

转载于:https://www.cnblogs.com/wjy-lulu/p/8993897.html

你可能感兴趣的文章
jquery选择器详解
查看>>
C# 保留2位小数
查看>>
使用xshell远程连接Linux
查看>>
杭电ACM1007
查看>>
faster-RCNN台标检测
查看>>
Unix环境高级编程 centos中配置apue编译环境
查看>>
运算符
查看>>
数据结构之各排序算法
查看>>
网页分帧操作<frameset>,<iframe>标签
查看>>
Vue生产环境部署
查看>>
酒店之王
查看>>
html5判断用户摇晃了手机(转)
查看>>
VS下Qt4.8.4安装
查看>>
Linux df命令
查看>>
redhat6.5 配置使用centos的yum源
查看>>
取得内表的数据数
查看>>
在一个程序中调用另一个程序并且传输数据到选择屏幕执行这个程序
查看>>
“=” “:=” 区别
查看>>
pwnable.kr lotto之write up
查看>>
python之UnittTest模块
查看>>